Lecture 11 - February 28

Model Checking

Path Satisfaction: Nested LTL Operators FG vs. F => FG

Announcements

- Released: WrittenTest 1, Lab2 solution
- To be released:
+ ProgTest 1 Guide (by the end of Wednesday)
+ ProgTest 1 practice questions (by Thursday class)

$$
\begin{aligned}
& \text { - I~2 algorithms } \\
& \text { - condistaris, loops, tuples } \\
& \text { - assertions (postandrition) }
\end{aligned}
$$

$\forall x \cdot P(x)$ dispose: fond an x st. $7(x)$
$\exists x \cdot P(x)$
dispare:
ford all past le x st. $\mathcal{P}(x)$.

Nesting "Global" and "Future" in LTL Formulas

$$
\underline{\underline{\mathbf{s}}} \models F G
$$

Each path starting with s is s.t. eventually, ϕ holds continuously.
Q. Formulate the above nested pattern of LTL operator.

$$
* \forall \pi \cdot \pi=S \rightarrow \cdots \Rightarrow * *
$$

$$
\left.\left.\cdot j \geqslant \tau \Rightarrow\left(\pi^{\top} \vDash \phi\right)\right)\right)
$$

Q. How to prove the above nested pattern of LTL operators?
*(1) consoler all path patterns starting from $S \rightarrow$ (Induna (th scare)
**(2) And such i **(3) each state subsequent to $\tau+h$ stare saras)ips ϕ
Q. How to disprove the above nested pattern of LTL operators??

* (1) Find a wines $\pi=s \rightarrow \ldots$
* (3) there's one subseguart
** (2) Show that for each state in π. State that valuates ϕ.

Path Satisfaction: Exercises (5.1)

$s \vDash \phi \Leftrightarrow$ all π starting at $s, \pi \vDash \phi$
$s_{0}=F G \mathbf{~ r a l s e}$
Witness: So $\rightarrow \mathrm{S}_{1} \rightarrow \mathrm{~S}_{0} \rightarrow \mathrm{~S}_{1} \rightarrow \cdots$

Witness
states in who ed
$\mathbf{S o}_{0} \vDash$ FE $(\mathrm{p} \vee \mathrm{r})^{\text {get sack heres }}$ and both p and q
in all a
possantiny $p s$.
(1) $\mathrm{So}_{\mathrm{o} \rightarrow \mathrm{S}_{2} \rightarrow \mathrm{~S}_{2} \rightarrow \text { TM e } \mid}$ are vedated
(2) $S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow \sqrt{2} \rightarrow \ldots$
(3) $50 \rightarrow \sqrt{4} \rightarrow$ So $_{0} \rightarrow \sqrt{1} \rightarrow$..

Exercise: What if we change the LHS to S_{2} ?

$$
\begin{aligned}
& s \vDash G \phi \\
& S \neq F G \phi \\
& \mathbb{S}_{S \phi}
\end{aligned}
$$

Nesting "Global" and "Future" in LTL Formulas

$$
S \vDash F \phi_{1} \Rightarrow F G \phi_{2}
$$

Each path π starting with s is st. if eventually $\phi 1$ holds on π, then $\phi 2$ eventually holds on π continuously.
Q. Formulate the above nested pattern of LTL operators.

$$
\begin{aligned}
& \forall \pi \cdot \pi=S \rightarrow \cdots \Rightarrow
\end{aligned}
$$

Q. How to prove the above nested pattern of LTL operators?
Q. How to disprove the above nested pattern of LTL operators?

